Efficient Online Multi-robot Exploration via Distributed Sequential Greedy Assignment

نویسندگان

  • Micah Corah
  • Nathan Michael
چکیده

This work addresses the problem of efficient online exploration and mapping using multi-robot teams via a distributed algorithm for planning for multi-robot exploration— distributed sequential greedy assignment (DSGA)—based on the sequential greedy assignment (SGA) algorithm. SGA permits bounds on suboptimality but requires all robots to plan in series. Rather than plan for robots sequentially as in SGA, DSGA assigns plans to subsets of robots during a fixed number of rounds. DSGA retains the same suboptimality bounds as SGA with the addition of a term describing suboptimality introduced due to redundant sensor information. We use this result to extend a single-robot planner based on Monte-Carlo tree search to the multi-robot domain and evaluate the resulting planner in simulated exploration of a confined and cluttered environment. The experimental results show that suboptimality due to redundant sensor information introduced by the distributed planning rounds remains near zero in practice when using as few as two or three distributed planning rounds and that DSGA achieves similar or better objective values and entropy reduction as SGA while providing a 2–6 times computational speedup for multi-robot teams ranging from 4 to 32 robots.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed on-line dynamic task assignment for multi-robot patrolling

Abstract Multi-Robot Patrolling is a key feature for various applications related to surveillance and security, and it has been studied from several different perspectives, ranging from techniques that devise optimal off-line strategies to implemented systems. However, still few approaches consider on-line decision techniques that can cope with uncertainty and non-determinism in robot behaviors...

متن کامل

Distributed Algorithm Design for Constrained Multi-robot Task Assignment

The task assignment problem is one of the fundamental combinatorial optimization problems. It has been extensively studied in operation research, management science, computer science and robotics. Task assignment problems arise in various applications of multi-robot systems (MRS), such as environmental monitoring, disaster response, extraterrestrial exploration, sensing data collection and coll...

متن کامل

Gossip Algorithms for Heterogeneous Multi-Vehicle Routing Problems

In this paper we address a class of heterogeneous multi-vehicle task assignment and routing problem. We propose two distributed algorithms based on gossip communication: the first algorithm is based on a local exact optimization and the second is based on a local approximate greedy heuristic. We consider the case where a set of heterogeneous tasks arbitrarily distributed in a plane has to be se...

متن کامل

Cooperative Observation of Multiple Moving Targets: an algorithm and its formalization

This paper presents a distributed control algorithm for multi-target surveillance by multiple robots. Robots equipped with sensors and communication devices discover and track as many evasive targets as possible in an open region. The algorithm utilizes information from sensors, communication, and a mechanism to predict the minimum time before a robot loses a target. Workload is shared locally ...

متن کامل

Hierarchical Distributed Task Allocation for Multi-robot Exploration

In order to more effectively explore a large unknown area, multiple robots may be employed to work cooperatively. When properly done, the group allocates specific portions of the overall exploration task to different robots such that the entire environment is explored with minimal excess effort. In this work, we present a new hierarchical market-based approach to this allocation problem. Our ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017